February 11

I normally don’t like The Economist as it promotes free trade between nations and historically that was the reason it started publishing and became popular. I however liked its description of the detection of gravitational waves:

TWO black holes circle one another. Both are about 100km across. One contains 36 times as much mass as the sun; the other, 29. They are locked in an orbital dance, a kilometre or so apart, that is accelerating rapidly to within a whisker of the speed of light. Their event horizons—the spheres defining their points-of-no-return—touch. There is a violent wobble as, for an instant, quintillions upon quintillions of kilograms redistribute themselves. Then there is calm. In under a second, a larger black hole has been born.

And then, 1.3 billion years later, in September 2015, on a small planet orbiting an unregarded yellow sun, at facilities known to the planet’s inhabitants as the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO), the faintest slice of those waves was caught. That slice, called GW150914 by LIGO’s masters and announced to the world on February 11th, is the first gravitational wave to be detected directly by human scientists. It is a triumph that has been a century in the making, opening a new window onto the universe and giving researchers a means to peer at hitherto inaccessible happenings, perhaps as far back in time as the Big Bang.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Note: If not opted-in, comments in moderation can be previewed only for a short while.

This site uses Akismet to reduce spam. Learn how your comment data is processed.